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Abstract
A classical (or quantum) superintegrable system is an integrable n-dimensional
Hamiltonian system with potential that admits 2n−1 functionally independent
constants of the motion polynomial in the momenta, the maximum possible.
If the constants are all quadratic the system is second-order superintegrable.
The Kepler–Coulomb system is the best known example. Such systems
have remarkable properties: multi-integrability and multi-separability, an
algebra of higher order symmetries whose representation theory yields spectral
information about the Schrödinger operator, deep connections with special
functions and with QES systems. For complex Riemannian spaces with n = 2
the structure and classification of second-order superintegrable systems is
complete. Here, however, we present a new and conceptually simpler approach
to the classification for complex Euclidean 2-space in which the possible
superintegrable systems with nondegenerate potentials correspond to points
on an algebraic variety. Specifically, we determine a variety in six variables
subject to two cubic and one quartic polynomial constraints. Each point on
the variety corresponds to a superintegrable system. The Euclidean group
E(2,C) acts on the variety such that two points determine the same
superintegrable system if and only if they lie on the same leaf of the foliation.
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1. Introduction

For any complex 2D Riemannian manifold we can always find local coordinates x, y such that
the classical Hamiltonian takes the form

H = 1

λ(x, y)

(
p2

1 + p2
2

)
+ V (x, y), (x, y) = (x1, x2),

i.e., the complex metric is ds2 = λ(x, y)(dx2 + dy2). This system is superintegrable for some
potential V if it admits three functionally independent constants of the motion (the maximum
number possible) that are polynomials in the momenta pj . It is second-order superintegrable
if the constants of the motion are quadratic, i.e., of the form L = ∑

aji(x, y)pjpi + W(x, y).
There is an analogous definition of second-order superintegrability for quantum systems with
the Schrödinger operator

H = 1

λ(x, y)

(
∂2

1 + ∂2
2

)
+ V (x, y)

and symmetry operators L = ∑
∂j (a

ji(x, y))∂i + W(x, y), and these systems correspond
one to one. Historically, the most important superintegrable system is the Euclidean space
Kepler–Coulomb problem where (in 2D) V = α/

√
x2 + y2. (Recall that this system not

only has angular momentum and energy as constants of the motion but a Laplace vector
that is conserved. The length of the Laplace vector can be expressed in terms of the energy
and angular momentum, so that there are just three functionally independent constants.) As
demonstrated in the literature, these systems have remarkable properties. In particular, every
trajectory of a solution of the Hamilton equations for such a system in four-dimensional phase
space lies on the intersection of three independent constant of the motion hypersurfaces in
that space, so that the trajectory can be obtained by algebraic methods alone, with no need to
solve Hamilton’s equations directly. Other properties include multiseparability (which implies
multi-integrability, i.e., integrability in distinct ways [1–13], except for one isolated Euclidean
system [14]), and the existence of a quadratic algebra of symmetries that closes at order 6.
The quadratic algebra in the quantum case gives information relating to the spectra of the
constants of the motion, including the Schrödinger operator. (The existence of this quadratic
algebra in the quantum Kepler–Coulomb case accounts for the fact that we can determine the
energy eigenvalues for the hydrogen atom by algebraic methods alone.)

There has been recent intense activity to uncover the structure of second-order
superintegrable systems in n dimensions and to classify them. For the easiest case, n = 2,
the classification is complete: [15–19]. (Note that we do not include the free motion case
where V is a constant in the classification. The free motion case was done much earlier by
Koenigs, [20].) The systems split into two classes, depending on the functional (or continuous)
linear independence of the basis of functionally independent symmetries. For n = 2, there is
only one functionally dependent superintegrable system, namely H = 4pzpz̄ + V (z), where
V (z) is an arbitrary function of z alone. This system separates in only one set of coordinates
z = x + iy, z̄ = x − iy. For functionally linearly independent 2D systems the theory is much
more interesting. The most general potential V that defines a superintegrable system on a
given Riemannian space that permits superintegrability is a solution of a system of equations
of the form

V22 − V11 = A22(x)V1 + B22(x)V2, V12 = A12(x)V1 + B12(x)V2. (1)

If the symmetry conditions {H,L} = 0, (or [H,L] = 0 in the quantum case) provide no further
conditions on the potential and if the integrability conditions for these PDEs are satisfied
identically, we say that the potential is nondegenerate. That means, at each regular point x0,
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i.e., a (generic) point where the Aij , Bij are defined and analytic and the basis symmetries are
linearly independent, we can prescribe the values of V, V1, V2 and V11 arbitrarily and there
will exist a unique potential V (x) with these values at x0. Nondegenerate potentials depend on
three parameters, in addition to the trivial additive parameter. Degenerate potentials depend on
less than three parameters. A basic result in 2D is that every potential V in a superintegrable
system that depends on at least one multiplicative parameter is a restriction of a nondegenerate
potential. Thus for a given space the classification problem reduces to finding all possible
nondegenerate potentials.

In this paper we introduce a new method to carry out the classification. The main
programme here is to treat second-order superintegrable systems by studying the coefficients
Cij in the equations for potentials (4) and (5). No use is made of separable coordinate
systems. The systems are classified according to invariants and relative invariants [22] given
by polynomials in the Cij .

We consider the nondegenerate case in two-dimensional complex Euclidean space. Here
it will be convenient to replace the complex Cartesian coordinates x, y by the coordinates z, z̄.
Thus for a superintegrable Hamiltonian

H = 4pzpz̄ + V, (2)

with quadratic constants of the form

L = a1p
2
z + a2pzpz̄ + a3p

2
z̄ + W (3)

the potential is nondegenerate if

∂2V

∂z2
= C11 ∂V

∂z
+ C12 ∂V

∂z̄
(4)

∂2V

∂z̄2
= C21 ∂V

∂z
+ C22 ∂V

∂z̄
. (5)

Here V,W, ai, C
ij are all functions of z and z̄. Throughout, z = x + iy and z̄ = x − iy

and all variables are allowed to take values in C. The relation with the nondegeneracy
conditions (1) is given by

C11 + C21 = − 1
2 (A22 + iB22), C12 + C22 = − 1

2 (A22 − iB22),

C11 − C21 = B12 − iA12, C12 − C22 = −B12 − iA12.

Rotations have a simple action on the coefficients Cij . A rotation about the origin through
an angle of θ has the effect

z′ = eiθ z, z̄′ = e−iθ z̄ (6)

and

C11′ = e−iθC11, C22′ = eiθC22, C12′ = e−3iθC12 and C21′ = e3iθC21 (7)

Claim. A superintegrable system is uniquely determined by specifying the six numbers
C11, C22, C12, C21, C12

z̄ and C21
z at a regular point that satisfy three polynomial constraints,

that is, a point on a three-dimensional algebraic variety in C
6. This solution manifold is

foliated into leaves on which the Euclidean group acts transitively. Each leaf corresponds to
one of the nondegenerate superintegrable systems E1, E2, E3, E7, E8, E9, E10, E11, E16,
E17, E19, E20 listed in [17]. (By E3 we mean an oscillator with linear terms added.) We
find a quadratic algebra as a consequence of these equations and give it explicitly in terms of
the C11, C22, C12, C21, C12

z̄ , C21
z , Vz, Vz̄ and Vzz̄ at a regular point. The rest of the paper is

devoted to a proof of these facts.
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2. Writing the system in an involutive form

The condition that L is a constant of the motion, that is {H,L} = 0, gives

∂a1

∂z̄
= 0

∂a3

∂z
= 0

∂a1

∂z
+

∂a2

∂z̄
= 0

∂a3

∂z̄
+

∂a2

∂z
= 0

∂W

∂z̄
= 1

4

∂V

∂z̄
a2 +

1

2

∂V

∂z
a1

∂W

∂z
= 1

4

∂V

∂z
a2 +

1

2

∂V

∂z̄
a3.

The superintegrability and functional linear independence requirements mean that there
are three linearly independent solutions of the above equations, including the Hamiltonian
itself.

Equating cross partial derivatives of W gives(
2
∂a3

∂z̄
− ∂a2

∂z
− 2a1C

12 + 2a3C
22

)
∂V

∂z̄
−

(
2
∂a1

∂z
− ∂a2

∂z̄
+ 2a1C

11 − 2a3C
21

)
∂V

∂z
= 0.

Since, by the nondegeneracy requirement, ∂zV and ∂z̄V can be arbitrarily chosen at any regular
point, their coefficients must vanish at all regular points, that is,

2
∂a3

∂z̄
− ∂a2

∂z
− 2a1C

12 + 2a3C
22 = 0 2

∂a1

∂z
− ∂a2

∂z̄
+ 2a1C

11 − 2a3C
21 = 0

on any set of regular points. Hence, all derivatives of ai can be expressed in terms of ai and
Cij .

Integrability conditions for ai yield the following expressions for derivatives of Cij :

∂C11

∂z
= 2

3
C22C12 +

2

3
(C11)2 − ∂C12

∂z̄
(8)

∂C11

∂z̄
= 2

3
C12C21 (9)

∂C22

∂z
= 2

3
C12C21 (10)

∂C22

∂z̄
= 2

3
C11C21 +

2

3
(C22)2 − ∂C21

∂z
(11)

∂C12

∂z
= 2

3
C11C12 (12)

∂C21

∂z̄
= 2

3
C22C21. (13)

If we introduce two new symbols C12
z̄ = ∂z̄C

12 and C21
z = ∂zC

21, and use integrability
conditions of (8)–(13) to solve for their derivatives, an involutive system is obtained. The
additional derivatives required are

∂C21
z

∂z
= 8

9
C22C12C21 − 4

3
C21C12

z̄ +
4

9
C21(C11)2 +

2

3
C11C21

z (14)

∂C21
z

∂z̄
= 2

3
C21

z C22 +
4

9
C12C21 (15)

∂C12
z̄

∂z
= 2

3
C12

z̄ C11 +
4

9
C12C21 (16)
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∂C12
z̄

∂ z̄
= 8

9
C11C12C21 − 4

3
C12C21

z +
4

9
C12(C22)2 +

2

3
C22C12

z̄ . (17)

Integrability conditions for V give a further two conditions cubic in Cij :

9C21C12
z̄ − 3C11C21

z − 2C22C12C21 − 2C21(C11)2 = 0 (18)

9C12C21
z − 3C22C12

z̄ − 2C11C12C21 − 2C12(C22)2 = 0, (19)

and derivatives of these introduce one further independent condition, quartic in Cij :

9C12
z̄ C21

z − 3C11C21C12
z̄ − 3C22C12C21

z + (C12)2(C21)2 − 2C11C22C12C21 = 0. (20)

There are no further independent integrability conditions since the polynomial ideal generated
by the left-hand sides of (18), (19) and (20) is closed under differentiation.

So, subject to three constraints, (18), (19) and (20), we now have an involutive system for
ai, V , Cij and W . The systems of equations (8)–(20) are invariants under rotations.

Thus we have an algebraic variety consisting of 6-tuples subject to conditions (18), (19)
and (20).

Theorem 1. Corresponding to each 6-tuple in the algebraic variety there is one and only one
Euclidean superintegrable system that agrees with this 6-tuple at some regular point.

3. Solving the equations

Note that equations (18) and (19) can be used to solve for C12
z̄ and C21

z if and only if

D = 9C21C12 − C11C22 �= 0.

So we consider two cases, D = 0 and D �= 0. (Here zero or nonzero means as a function of z

and z̄, not just at a point. Indeed, using the Bertrand–Darboux equations [15] it is easy to see
that Cij must be rational functions of z and z̄. In particular, they are analytic and their only
singularities are poles.)

3.1. D = 0

Using D = 0, ∂zD = ∂z̄D = 0 lead to

C12C21
(
27C21

z − 2(C22)2
) = 0 C12C21

(
27C12

z̄ − 2(C11)2
) = 0.

If C12C21 �= 0, we find

C12
z̄ = 2

27
(C11)2 and C21

z = 2

27
(C22)2.

Substituting these into the involutive system for Cij , C21
z and C12

z̄ gives

C11(7(C11)2 + 9C22C12) = 0, C22(25(C11)2 + 63C22C12) = 0,

C22(7(C22)2 + 9C11C21) = 0, C11(25(C22)2 + 63C11C21) = 0,

which are inconsistent. Hence, C12C21 = 0 and since D = 0, we must also have C11C22 = 0.
So there are four cases.

(A) C11 = C12 = 0
(B) C11 = C21 = 0
(C) C22 = C21 = 0
(D) C22 = C12 = 0.
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Under reflection in the x-axis (i.e. interchange of z and z̄), systems satisfying (A) are exchanged
with those satisfying (C) and systems satisfying (B) are exchanged with solutions satisfying
(D).

Note that we can use (8)–(20) to show that if one of these conditions holds at a point, then
one of them must also hold in a neighbourhood of that point. For example, if (A) holds at a
point, then either (A) or (C) holds in a neighbourhood. Hence, without loss of generality, we
can consider the conditions defining cases (A)–(D) as holding in a neighbourhood.

3.1.1. (A) C11 = C12 = 0. With C11 = C12 = 0, equations (8)–(13) become

∂C22

∂z
= 0 (21)

∂C22

∂z̄
= 2

3
(C22)2 − ∂C21

∂z
(22)

∂C21

∂z̄
= 2

3
C22C21. (23)

So C22 depends only on z̄ and so we can set C22 = X(z̄). Differentiating (22) with respect
to z shows that C21 is at most linear in z, that is,

∂2C21

∂z2
= 0 �⇒ C21 = Y (z̄)z + Z(z̄), (24)

where Y (z̄) and Z(z̄) are functions to be determined. Now, (23) becomes

Y ′(z̄)z + Z′(z̄) = 2
3 (Y (z̄)z + Z(z̄))X(z̄) (25)

and equating coefficients of z,

Y ′(z̄) = 2
3Y (z̄)X(z̄) (26)

Z′(z̄) = 2
3Z(z̄)X(z̄). (27)

First consider the case Y (z̄) = 0. Then from (22), X(z̄) satisfies

X′(z̄) = 2
3X(z̄)2 (28)

which has solutions

X(z̄) = 0 or X(z̄) = 3

c1 − 2z̄
, (29)

where c1 is a constant. Since we consider systems related by a translation to be equivalent,
we can always set c1 = 0. Using (27) we find two solutions

X(z̄) = 0 �⇒ Z(z̄) = c2 (30)

and

X(z̄) = − 3

2z̄
�⇒ Z(z̄) = c2

z̄
. (31)

Note that rotations scale the each of Cij by a nonzero factor, so we must distinguish the cases
in which c2 = 0 from those in which c2 �= 0. For the first solution (30), we consider c2 = 0
and c2 = 2.

(1) C11 = 0, C12 = 0, C22 = 0, C21 = 0

V = αzz̄ + βz + γ z̄ + δ. (E3)
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(2) C11 = 0, C12 = 0, C22 = 0, C21 = 2

V = αz̄(z̄2 + 3z) + β(z̄2 + z) + γ z̄ + δ. (E10)

For the second solution (31) we consider c2 = 0 and c2 = 3
2 .

(3) C11 = 0, C12 = 0, C22 = − 3
2z̄

, C21 = 0

V = αz√
z̄

+
β√
z̄

+ γ z + δ. (E11)

(4) C11 = 0, C12 = 0, C22 = − 3
2z̄

, C21 = 3
2z̄

V = α√
z̄

+ β(z + z̄) +
γ (z + 3z̄)√

z̄
+ δ. (E9)

Now, if Y (z̄) �= 0, then using (22) and (26) we find(
X(z̄)

Y (z̄)

)′
= X′(z̄)Y (z̄) − X(z̄)Y ′(z̄)

Y (z̄)2
=

(
2
3X(z̄)2 − Y (z̄)

)
Y (z̄) − X(z̄)

(
2
3X(z̄)Y (z̄)

)
Y (z̄)2

= −1

�⇒ X(z̄)

Y (z̄)
= c1 − z̄ �⇒ 2Y (z̄)′

3Y (z̄)2
= c1 − z̄ �⇒ Y (z̄) = 3

(z̄ − c1)2 − c2
.

From equation (26), we find X(z̄) and equations (26) and (27) say that for X(z̄) �= 0, Z(z̄) is
a constant multiple of Y (z̄),

X(z̄) = − 3z̄

(z̄ − c1)2 − c2
, Z(z̄) = c3

(z̄ − c1)2 − c2
.

Again, we can remove c1 and c3 with a translation and, since c2 is proportional to the relative
invariant (C22)2 − 3C21

z , we must distinguish cases with c2 = 0 from those with c2 �= 0. We
consider the two solutions with c2 = 0 and c2 = 1.

(5) C11 = 0, C12 = 0, C22 = − 3
z̄
, C21 = 3z

z̄2

V = αzz̄ +
β

z̄2
+

γ z

z̄3
+ δ. (E8)

(6) C11 = 0, C12 = 0, C22 = − 3z̄
z̄2−1 , C21 = 3z

z̄2−1

V = αzz̄ +
βz̄√
z̄2 − 1

+
γ z(2z̄2 − 1)√

z̄2 − 1
+ δ. (E7)

3.1.2. (B) C11 = C21 = 0. In this case, (8) and (19) become

0 = 2
3C22C12 − C12

z̄ 0 = C22
(
3C12

z̄ + 2C12C22
)

and so, either C22 = 0, which then leads to system (E10) with z and z̄ interchanged, or C12 = 0
which gives system (E11).

3.1.3. (C) C22 = C21 = 0 and (D) C22 = C12 = 0. Cases (C) and (D) give potentials
obtained from those in cases (A) and (B) by interchanging z and z̄.
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3.2. D �= 0

The remaining cases have D �= 0. Using (18) and (19) we can solve for C21
z and C12

z̄ to give

C12
z̄ =

2
3C12(4C21(C11)2 + C11(C22)2 + 3C22C12C21)

9C12C21 − C11C22
(32)

C21
z =

2
3C21(4C12(C22)2 + C22(C11)2 + 3C11C21C12)

9C12C21 − C11C22
. (33)

Substituting these into (20) we find the quartic identity becomes

N1N2N3N4

D2
= 0,

where

N1 = C12,

N2 = C21,

N3 = C11C22 − C12C21,

N4 = (C11)2(C22)2 − 27(C12)2(C21)2 + 4(C11)3C21 + 4C12(C22)3 + 18C11C22C12C21.

It is easily verified that N1 and N2 scale under rotations, whereas D,N3 and N4 are invariants.
From above, we can see that given D �= 0, both partial derivatives of C12 are proportional to
C12 and similarly for C21. Hence, they are relative invariants. The same is true of N3 and N4.

∂N3

∂z
= 2N3((C

11)2C22 − 3C11C21C12 + 2C12(C22)2)

3D

∂N3

∂z̄
= 2N3((C

22)2C11 − 3C22C12C21 + 2C21(C11)2)

3D

∂N4

∂z
= 4

3
N4C

11

∂N4

∂z̄
= 4

3
N4C

22.

3.2.1. N1 = C12 = 0. Since D �= 0, we must have C11 �= 0 and C22 �= 0. The derivatives
of the C11 become ∂zC

11 = 2
3 (C11)2 and ∂z̄C

11 = 0, hence, after a suitable translation,

C11 = − 3

2z
.

The other derivatives are now

∂C22

∂z
= 0 (34)

∂C22

∂z̄
= −2

z
C21 +

2

3
(C22)2 (35)

∂C21

∂z
= 1

z
C21 (36)

∂C21

∂z̄
= 2

3
C22C21. (37)
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Equations (36) and (37) say that C21 = X(z̄)z, where X(z̄) is a function to be determined.
This leads to distinct cases when X(z̄) = 0 or X(z̄) �= 0 since C21 is a relative invariant.

First consider X(z̄) = 0, and so C21 = 0 and (35) has the solution

C22 = − 3

2z̄
. (38)

As before, the constant of integration has been absorbed by a suitable translation. Note that
in this case N4 �= 0. So we have

(7) C11 = − 3
2z

, C12 = 0, C22 = − 3
2z̄

, C21 = 0

V = α√
zz̄

+
β√
z

+
γ√
z̄

+ δ. (E20)

Next consider X(z̄) �= 0 and so C22 = 3X′(z̄)/(2X(z̄)). Substituting these into (35) gives

X′′(z̄)X(z̄) − 2X′(z̄)2 +
4

3
X(z̄)3 = 0 ⇒

(
1

X(z̄)

)′′
= 4

3

⇒ X(z̄) = 3

2z̄2 + c1z̄ − 2c2
.

A translation can be used to set c1 = 0. This solution gives

N4 = 81c2

4z2(z̄2 − c2)2
,

which is a relative invariant and hence the case c2 �= 0 must be distinguished from c2 = 0. We
consider the two solutions with c2 = 0 and c2 = 1.

(8) C11 = − 3
2z

, C12 = 0, C22 = − 3
z̄
, C21 = 3z

2z̄2

V = α√
zz̄

+
β

z̄
√

zz̄
+

γ

z̄2
+ δ. (E17)

(9) C11 = − 3
2z

, C12 = 0, C22 = − 3z̄
z̄2−1 , C21 = 3z

2(z̄2−1)

V = αz̄√
z̄2 − 1

+
β√

z(z̄ + 1)
+

γ√
z(z̄ − 1)

+ δ. (E19)

3.2.2. N2 = C21 = 0. Systems for which N2 = 0 can be obtained from those with N1 = 0
by reflection in the line y = 0, that is, by interchanging z and z̄.

3.2.3. N3 = C11C22 − C12C21 = 0. Since D �= 0, all of the Cij must be non-vanishing and
so we can make the substitution C21 = C12/(C11C22). We can then show that

∂2

∂z2

(
C11

C22

)
= ∂2

∂z̄2

(
C22

C11

)
= 0 �⇒ C11

C22
= c1z + c2

c3z̄ + c4
.

This observation allows the equations for the Cij to be solved in a straightforward manner.
Translations and rotations can be used to make specific choices for c1, c2, c3, c4; however, N4

is proportional to c1 and c3 and it can be shown that c1 = 0 ⇔ c3 = 0. Hence we must
distinguish cases in which c1 = c3 = 0 vanishes from those in which c1 and c2 are nonzero.
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Firstly, with c1 = −1, c2 = 0, c3 = 1, c4 = 0, we find

(10) C11 = − 3z
z2−z̄2 , C

12 = 3z̄
z2−z̄2 , C

22 = 3z̄
z2−z̄2 , C

21 = − 3z
z2−z̄2 .

V = α(x2 + y2) +
β

x2
+

γ

y2
+ δ. (E1)

Secondly, with c1 = 0, c2 = 1, c3 = 0, c4 = 1, we find

(11) C11 = − 3
4x

, C12 = − 3
4x

, C22 = − 3
4x

, C21 = − 3
4x

.

V = α(x2 + 4y2) +
β

x2
+ γy + δ. (E2)

3.2.4. N4 = 0. The final possibility is that N4 = 0 while N1, N2 and N3 are nonzero. To
simplify the equations, we note that N4 can be written as

N4 = 1
4M3M

2
2 + M1M4,

where

M1 = C11 + C22 − C12 − C21

M2 = C11 − C22 − 3C12 + 3C21

M3 = 3C21C12 − C11C22 + C11C21 + C22C12

and M4 is a cubic function of Cij . Since at least three of the Cij are nonzero a rotation can be
performed so that M1 = 0 and furthermore, since

∂M1

∂z
= M5M1 − 1

2
M2M3(C

11 − C22 + C12 − C21)

∂M1

∂z̄
= M6M1 − 1

2
M2M3(C

11 − C22 + C12 − C21),

where M5 and M6 are quartic functions of Cij , the condition M1 = 0 is maintained under
translations when N4 = 0. So the condition N4 = 0 can be replaced by either M1 = M2 = 0,
which leads to N3 = 0 and so has already been considered, or M1 = M3 = 0. It can be shown
that if M2 �= 0 and N4 and M1 vanish in a neighbourhood, then so does M3. So we can solve
for C11 and C12 in terms of C22 and C21 and then, after a suitable translation the last remaining
case is found.

(12) C11 = 3(z̄−2z)

2(z(z−z̄))
, C12 = 3z̄

2(z(z−z̄))
, C22 = 3(z−2z̄)

2(z̄(z̄−z))
, C21 = 3z

2(z̄(z̄−z))
.

V = 1√
x2 + y2

(
α +

β

x +
√

x2 + y2
+

γ

x −
√

x2 + y2

)
+ δ. (E16)

4. The quadratic algebra

The fact that the algebra of constants of the motion of a nondegenerate 2D superintegrable
system closes quadratically was establish in [14] and has been used to determine the spectra
of the quantum versions of these systems [21] as well as in their classification [19, 23]. Using
results presented here we give a very direct and explicit description of the quadratic algebra.

Since we have an involutive system for ai , the dimension of the space of second-order
constants is three. At any point H has

(
a

(0)
1 , a

(0)
2 , a

(0)
3

) = (0, 4, 0). We can complete a basis
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by choosing two more second-order constants, L1 and L2, which at a particular regular point
have (

a
(1)
1 , a

(1)
2 , a

(1)
3

) = (1, 0, 0),
(
a

(2)
1 , a

(2)
2 , a

(2)
3

) = (0, 0, 1).

Furthermore, we are free to choose the additive constant in V,W(1) and W(2) so that they
vanish at the regular point. We denote the values of Vz, Vz̄ and Vzz̄ at the regular point by
V 0

z , V 0
z̄ , and V 0

zz̄.
If we define,

Q = {L1, L2},
then

Q2 = 16

9

(
(C21)2L3

1 +
(
C11C21 + 3C21

z

)
L2

1L2 +
(
C22C12 + 3C12

z̄

)
L1L

2
2 + (C12)2L3

2

)
+

4

9

(
2
(
C22C21H + 3C21V 0

z̄

)
L2

1 + 2
(
C11C12H + 3C12V 0

z

)
L2

2

+
((

5C12C21 − C11C22
)
H − 3C22V 0

z − 3C11V 0
z̄ + 9V 0

zz̄

)
L1L2

)
+

1

9

((
(C22)2 − 3C11C21 − 3C21

z

)
H 2 + 6

(
C22V 0

z̄ − C21V 0
z

)
H + 9

(
V 0

z̄

)2)
L1

+
1

9

((
(C11)2 − 3C22C12 − 3C12

z̄

)
H 2 + 6

(
C11V 0

z − C12V 0
z̄

)
H + 9

(
V 0

z

)2)
L2

− 1

36
(C11C22 + 7C12C21)H 3 − 1

12

(
C11V 0

z̄ + C22V 0
z + 3V 0

zz̄

)
H 2 − 1

2
V 0

z̄ V 0
z H. (39)

Since

{Q,L1} = −1

2

∂Q2

∂L2
and {Q,L2} = 1

2

∂Q2

∂L1
,

equation (39) determines the quadratic algebra, and guarantees its existence.
Using discriminants of a cubic, it can be shown that the part of Q2 that is cubic in L1 and

L2 has at least a repeated factor. Cases in which the factor is a triple factor can be distinguished
from those with a double factor. This analysis can be extended to classify the possible systems
according to their quadratic algebra as they have been in [19] and [23].

5. Classification by invariants

We consider systems related by symmetries of the complex Euclidean plane to be equivalent.
The local action of the group is given by (8) for the generators of translations. The action of
the rotations is given by (7).

For each system there is a subgroup of motions that leaves the form of the potential
unchanged, the isotropy subgroup of the system.

The relative invariants that distinguish each system from other systems as well as the
generators of the isotropy subgroup of E(2, C) are summarized in tables 1 and 2.

In the case of systems with D �= 0, it has been shown above that N1, N2, N3 and N4 are
relative invariants and these are summarized in table 1.

For the case D = 0, all systems found either have C11 = C12 = C12
z̄ = 0 or can be

obtained from these systems by y ↔ −y and, so we assume C11 = C12 = C12
z̄ = 0 and find

∂zC
21
z = 0

∂z̄C
21
z = 2

3C22C21
z

∂z

(
(C22)2 − 3C21

z

) = 0

∂z̄

(
(C22)2 − 3C21

z

) = 4
3C22

(
(C22)2 − 3C21

z

)
.
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Table 1. Relative invariants and generators of the isotropy subgroup for systems with D �= 0.

Generators of the
isotropy subgroup

D N1 N2 N3 N4 continuous discrete

E1 9
2x2 + 9

2y2
−3iz̄
4xy

3iz
4xy

0 − 81
4x2y2 Rx=0, Ry=x

E2 9
2x2 − 3

4x
− 3

4x
0 0 Tx Rx=0, Ry=0

E16 9x2

2zz̄y2 − 3iz̄
4zy

3iz
4z̄y

9
2zz̄

0 Rx=0, Ry=0

E17 − 9
2zz̄

0 3z

2z̄2
9

2zz̄
0 Mθ

E19 − 9z̄

2(z̄2−1)
0 3z

2(z̄2−1)

9z̄

2z(z̄2−1)

81
z2(z̄2−1)2 Mπ

E20 − 9
4zz̄

0 0 9
4zz̄

81
16z2 z̄2 Mθ Rx=0

Table 2. Relative invariants and generators of the isotropy subgroup for systems with D = 0,
assuming C11 = C12 = C12

z̄ = 0.

Generators of the
isotropy subgroup

D (C22)2 − 3C21
z C21

z C21 continuous discrete

E3 0 0 0 0 Tx, Ty, Mθ

E7 0 9
(z̄2−1)2

3
z̄2−1

Mπ

E8 0 0 3
z̄2 Mθ

E9 0 9
4z̄2 0 3

2z̄
Tx + iTy Mπ

E10 0 0 0 2 Tx, Ty

E11 0 9
4z̄2 0 0 Tx + iTy, Mθ

Thus, since C21
z and (C22)2 − 3C21

z scale under rotations, they are relative invariants in case
(A) above. Further, if C21

z = 0, then ∂zC
21 = 0 and ∂z̄C

21 = 2
3C22C21 and hence it is a

relative invariant in case (A) with C21
z = 0.

Note that the two tables show that the isotropy subgroups, together with the condition
D ≡ 0 or D �= 0, are sufficient to distinguish all superintegrable systems.
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